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LETTER TO THE EDITOR

Massive particles in the relativistic limit of the
non-half-filled 1D attractive Hubbard model

F Woynarovich†
Research Institute for Solid State Physics, H–1525 Budapest, PO Box 49, Hungary

Received 29 August 1995

Abstract. The continuum limit of the Bethe ansatz solution for an attractive Hubbard chain
is considered in which the particle number per siten is kept finite (0< n < 1). It is shown
that by adjusting the hoppingt , the HubbardU and the lattice constanta in a proper way the
excitations connected to unbound electrons will be relativistic with a finite mass. The higher
level Bethe ansatz equations for these particles are given. The spectrum and the phase shifts of
these particles show close analogy to those of the massive particles of the SU(2) chiral invariant
Gross–Neveu model.

The one-dimensional (1D) Hubbard model, being completely integrable (Shastry 1988) and
exactly solvable by the Bethe ansatz (BA) (Lieb and Wu 1968), plays a central role in the
theory of strongly correlated electron systems (Korepin and Eßler 1994). At the same time,
by direct linearization around the Fermi points (Sólyom 1979), the model can be related
to relativistic field theory models (Gross and Neveu 1974, Wiegmann and Larkin 1977),
particularly to the SU(2) Gross–Neveu model. Since the Gross–Neveu model can also be
diagonalized byBA (Andrei and Lowenstein 1979), constructing the relativistic limit of the
BA solution of the Hubbard chain can be of two-fold interest. On one hand it provides a
possibility to study the details of the relationship of the two models, and on the other hand,
if equivalence is established, the Hubbard chain can be considered as a regularization of the
Gross–Neveu model. Earlier Filev (1977), and more recently Melzer (1995), studied the
relativistic limit of the half-filled Hubbard chain. While Filev (1977) concentrated on the
massive particles, Melzer (1995) has shown that in the scaling limit the half-filled Hubbard
chain has one massive and two massless excitations, which based on the spectrum and the
phase shifts can be identified to those of the SU(2) chiral invariant Gross–Neveu model.
In the present letter we give the scaling (relativistic) limit of the non-half-filled attractive
Hubbard chain. We construct the spectrum of the massive particles, and we show that they
have the same spectrum and phase shifts as the analogous particles of the half-filled chain
and SU(2) chiral invariant Gross–Neveu model.

The model is described by the Hamiltonian

Ĥ = −t
N∑
i=1

∑
σ=↑,↓

(c+i,σ ci+1,σ + HC)+ U

N∑
i=1

(n̂i,↑ − 1
2)(n̂i,↓ − 1

2)

+µ
N∑
i=1

(n̂i,↑ + n̂i,↓) (1)
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in which c+i,σ (ci,σ ) creates (destroys) an electron at the sitei with spin σ , n̂i,σ = c+i,σ ci,σ ,
and according to the periodic boundary condition the sitei = N + 1 is the same as the
site i = 1. The hoppingt is positive while the interactionU is negative, and the value
of the chemical potentialµ is choosen to fix the desired particle number per siten. The
eigenvalue equation of this Hamiltonian has been reduced to a set of nonlinear equations
by Lieb and Wu (1968):

Nkj = 2πIj −
M∑
α=1

2 tan−1 sinkj − λα

U/4
(2a)

Ne∑
j=1

2 tan−1 λα − sinkj
U/4

= 2πJα +
M∑
β=1

2 tan−1 λα − λβ

U/2
. (2b)

HereNe is the number of electrons,M is the number of down spins, i.e.Sz = (Ne/2−M),
and theIj and Jα quantum numbers are integers or half-odd-integers depending on the
parities ofNe andM. Once these equations are solved the wavefunction can be given
(Woynarovich 1982), and also the energy and the momentum of the corresponding state can
be calculated:

E = NU/4 −
Ne∑
j=1

(2t coskj + U/2 − µ) P =
Ne∑
j=1

kj . (3)

For the consideredU < 0 attractive chain near the ground state most of the electrons form
bound pairs with wavenumbers given (up to correction exponentially small inN ) as

sink± = 3± iu (4)

with u = |U |/4t and3 being a subset of the setλ. By this relationk± can be eliminated
from equation (2) and one finds that the wavenumbers of the unbound electrons, theλs
connected with their spin distribution and the3s of the bound pairs satisfy the equations
(Woynarovich 1983, Woynarovich and Penc 1991)

2πIj = Nkj −
n(λ)∑
α=1

2 tan−1 sinkj − λα

u
−

n(3)∑
η=1

2 tan−1 sinkj −3η

u
(5a)

n(k)∑
j=1

2 tan−1 λα − sinkj
u

= 2πJα +
n(λ)∑
β=1

2 tan−1 λα − λβ

2u
(5b)

2πJη = N(sin−1(3η − iu)+ sin−1(3η + iu))−
n(k)∑
j=1

2 tan−1 3η − sinkj
u

−
n(3)∑
ν=1

2 tan−1 3η −3ν

2u
. (6)

Here n(k), n(λ) and n(3) are the number of unbound electrons, the number of unbound
electrons with down spins, and the number of bound pairs, respectively (Ne = n(k) +
2n(3),M = n(λ) + n(3)), and the quantum numbers areIj = (n(λ) + n(3))/2(mod 1),
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Jα = (n(k)− n(λ)+ 1)/2(mod 1) andJη = (n(k)+ n(3)+ 1)/2(mod 1). The energy and
momentum expressed by these variables is

E = −Nu−
∑
j

(2t (coskj − u)− µ)

−
∑
η

(
2t

(√
1 − (3η − iu)2 +

√
1 − (3η + iu)2 − 2u

)
− 2µ

)
P = 2π

N

( ∑
j

Ij −
∑
α

Jα +
∑
η

Jη

)
.

(7)

We now consider the relativistic limit. In the ground state ofNe = even electrons theJη
are consecutive integers or half-odd-integers betweenJmax/min = ±(Ne/2 − 1)/2 and there
are no realks. This state can be excited by combinations of the following three ‘elementary’
excitations:

(i) introducing holes and particles in the3 distribution by removing someJη from the
ground-state set and introducing some outside(Jmax, Jmin);

(ii) introducing complex3s;
(iii) introducing unbound electrons (realks).
The excitations type (i) at the proper choice ofµ have a dispersion with no gap, whereas

those of type (ii) and (iii) possess gaps. The relativistic limit is a continuum limitN → ∞,
a → 0 so thatNa = L = constant (a andL being the lattice constant and the chainlength,
respectively), in which the particle number per siteNe/N → n finite, i.e.Ne → ∞ too.
For this the interactionu has also to be adjusted (actuallyu → 0) to avoid divergences.
Finally, althougha does not appear explicitly in̂H , sincet ∝ 1/distance,t → ∞ asa → 0.
All this is to be performed so that the gap in the spectrum of type (iii) excitations is kept
finite. In this limit the excitations of type (i) have a linear dispersion, while the gap of the
excitations of type (ii) diverges. In the following, concentrating on the excitations of type
(iii), i.e. on the unbound electrons only, we construct the above described limit. We show
that if

u → 0, t → ∞
N,Ne → ∞ atNe/N → n = constant< 1

a → 0 atNa = L = constant

(8a)

so that

m0 = 8t

π

√
u sin3(πn/2) exp

{
−π sin(πn/2)

2u

}
= constant (8b)

2at sin(πn/2) = 1 (8c)

then the spectrum of type (iii) massive particles is

E − E0 =
∑
κ

ε(κ) P − p =
∑
κ

p(κ) (9a)

whereE0 is the ground-state energy,p = ±πn/2a (p = 0) if the number ofκs is odd
(even),

ε(κ) = m0 cosh(κ) p(κ) = m0 sinh(κ) (9b)
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and the rapiditiesκ and the set of variablesχ replacing theλs satisfy the higher levelBA

equations

Lp(κ) = 2πIκ −
∑
κ ′
φ

(
κ − κ ′

π

)
+

∑
χ

2tan−1

(
κ − χ

π/2

)
(10a)

∑
κ

2tan−1

(
χ − κ

π/2

)
= 2πJχ +

∑
χ ′

2tan−1

(
χ − χ ′

π

)
(10b)

φ(x) = 1

i
ln
0( 1

2 − i x2)0(1 + i x2)

0( 1
2 + i x2)0(1 − i x2)

.

We note, that (10a) and (10b) yield the same phase shifts as those obtained for the half-filled
band (Melzer 1995):

ψtr = −φ
(
1κ

π

)
ψs = −φ

(
1κ

π

)
+ 2 tan−1

(
1κ

π

)
(1κ = κ − κ ′). (11)

We now look at the structure of the spectrum. To derive equations (9a) and (9b),
and (10a) and (10b) we consider states where theJη distribution corresponds to that of
the ground state (n(3) consecutive integers or half-odd-integers centred around the origin
obeying the parity prescription given above) and there is a numbern(k) � N of realks. In
this case all the3 are real, and ifN → ∞—as can be derived by standard methods—they
will be distributed according to the density

ς(3) = σ(3)+ 1

N

∑
k

%(3, k) (12)

whereσ and% satisfy equations of the type

x(3) = Ix(3)− 1

2π

∫ B+

B−
K2(3−3′)x(3′) (13)

Km(ξ) = 2mu

(mu)2 + ξ2

with inhomogeneous parts

σ(3) : Iσ = σ0(3) = 1

2π
2 Re

((√
1 − (3− iu)2

)−1
)

%(3, k) : I% = − 1

2π
K1(3− sink)

(14)

respectively, whereB+ andB− are determined by the equations∫ ∞

B+
ς(3) = 1

2

(
1 − 2n(3)+ n(k)

N

)
∓

{
1

2N

}
∫ B−

−∞
ς(3) = 1

2

(
1 − 2n(3)+ n(k)

N

)
±

{
1

2N

} (15)

where the terms in curly brackets are present only if the number ofκs is odd. (These terms
together with thep term in equation (9a) originate from the parity prescription for theJη



Letter to the Editor L41

and fit coherently into the treatment of the massless excitations.) The energy of the system
is given by

E = −Nu−
∑
j

(2t (coskj − u)− µ)

−N
∫ B+

B−

(
4t

(
Re

√
1 − (3η − iu)2 − u

)
− 2µ

)
ς(3) (16)

which through straightforward manipulations (Woynarovich and Penc 1991) can be
transformed into the form

E = −Nu+N

∫ B+

B−
ε(3)σ0(3)

+
∑
j

{
− (2t (coskj − u)− µ)− 1

2π

∫ B+

B−
ε(3)K1(3− sinkj )

}
(17)

whereε(3) satisfies equation (13) with an inhomogeneous part:

ε(3) : Iε = ε0(3) = −
(

4t
(

Re
√

1 − (3− iu)2 − u
)

− 2µ
)
. (18)

If a functionx(3) satisfies equation (13), it also satisfies the relation (that is an appropriate
integral of (13))∫ B+

B−
Km(ξ −3)x(3) = −

( ∫ B−

−∞
+

∫ ∞

B+

)
Km(ξ −3)x(3)

+
∫ ∞

−∞
Km(ξ −3)Ix(3)−

∫ B+

B−
Km+2(ξ −3)x(3). (19)

Through the successive application of this relation the energy takes the form

E = N

( ∫ B+

B−
ε(3)σ0(3)− u

)
+

∑
j

{
− (2t (coskj − u)− µ)− 1

4u

∫ ∞

−∞

1

cosh(3− sinkj )π/2u
ε0(3)

}

+
∑
j

1

4u

( ∫ B−

−∞
+

∫ ∞

B+

)
1

cosh(3− sinkj )π/2u
ε(3). (20)

Before evaluating equation (20) in the above-described limit, consider equation (5a).
Replacing the sum over3η by an integral one has

2πIj = Nkj −
n(λ)∑
α=1

2 tan−1 sinkj − λα

u
−N

∫ B+

B−
2 tan−1 sinkj −3

u
ς(3). (21)

This, through the relation (which is actually an integral of equation (19))∫ B+

B−
tan−1 ξ −3

mu
x(3) = −

( ∫ B−

−∞
+

∫ ∞

B+

)
tan−1 ξ −3

mu
x(3)

+
∫ ∞

−∞
tan−1 ξ −3

mu
Ix(3)−

∫ B+

B−
tan−1 ξ −3

(m+ 2)u
x(3) (22)
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can be transformed into the form

2πIj = N

{
kj −

∫ ∞

−∞
2 tan−1 tanh

π(sinkj −3)

4u
σ0(3)

}
+N

( ∫ B−

−∞
+

∫ ∞

B+

)
2 tan−1 tanh

π(sinkj −3)

4u

(
σ(3)+ 1

N
%(3)

)
+

n(k)∑
j ′

1

2π

∫ ∞

−∞
2 tan−1 tanh

π(sinkj −3)

4u
K1(3− sinkj ′)

−
n(λ)∑
α

2 tan−1 sinkj − λα

u
. (23)

Up to now no approximation has been made, and relations (20) and (23) are exact at
any values ofU , t , N , anda. Now we make those approximations, which in the scaling
limit will become exact. For easy reference let us introduce the system ‘r ’ with no real ks,
but with the same number of3s! This is determined by the equations

σr(3) = σ0(3)− 1

2π

∫ B

−B
K2(3−3′)σr(3′) (24a)

with ∫ ∞

B

σr(3) =
∫ −B

−∞
σr(3) = 1

2

(
1 − 2n(3)

N

)
= 1

2
− n (24b)

and

εr(3) = ε0(3)− 1

2π

∫ B

−B
K2(3−3′)εr(3′). (25a)

We chooseµ so that

εr(B) = 0. (25b)

Considering (12) and (15) and (24b) it is clear that ifN → ∞, so thatn(3)/N = n

and n(k) are kept constant, thenB+ = B + O(1/N) and B− = −B + O(1/N). As a
consequence of this and (25b) ε(3) = εr(3)+O(t/N2) and, in (20),ε(3) can be replaced
by εr(3) andB+ = −B− = B can be used (therefore introducing an errorO(1/L) only).
So the first term in (20), being the ground-state energy, although divergent in theN → ∞
limit, need not be considered. The second term is formally the same as the excitation energy
in a half-filled chain (Filev 1977, Melzer 1995) and it behaves as though proportional to
t
√
u exp{−π/2u}, i.e. it decays when compared to the third term, which ifu → 0 is in

leading order:

E − E0 =
n(k)∑
j

(
1

u
e−Bπ/2u

∫ ∞

0
e−3π/2uεr(B +3)

)
cosh

π sinkj
2u

. (26)

TheN → ∞ limit in (23) is made as follows. The first term on the right-hand side is exactly
the same as the analogous term in thehalf-filled case; it decays as though proportional to
(1/a)

√
u exp{−π/2u} and can be neglected. In the second term we may write

2 tan−1 tanh
π(sink −3)

4u
≈ −sgn(3)

(π
2

− 2e−|3−sink|π/2u
)
. (27)
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Also in this termB± can be replaced by±B andσ(3) by σr(3), while the%(3, k) terms
can be neglected. Finally, replacingN by L/a leads to

n(k)∑
j

L

(
4

a
e−Bπ/2u

∫ ∞

0
e−3π/2uσr(B +3)

)
sinh

π sinkj
2u

. (28)

Evaluating the third term explicitly, and introducing the notations(
1

u
e−Bπ/2u

∫ ∞

0
e−3π/2uεr(B +3)

)
= m0(

4

a
e−Bπ/2u

∫ ∞

0
e−3π/2uσr(B +3)

)
= m0

κ = π sink

2u
χ = πλ

2u

(29)

and also using the momentum in (7) one arrives at (9a) and (9b) and (10a) and (10b).
Finally, one should evaluatem0, i.e. the integrals in (26), (28), and (29). This is possible

in theu → 0 limit in leading order: equations (24a)–(25b) can be solved by Wiener–Hopf
techniques. The solution is described by Woynarovich and Penc (1991); here we cite the
results only: ∫ ∞

0
e−3π/2uxr(B +3) = 2u

π

√
π

e
xr(B)+ 4u2

π2

√
π

e

x ′
0(B)√

2
(30)

with x(3) : ε(3) or σ(3) and prime means derivative according to3,

lim
u→0

xr(B) = 1√
2

lim
u→0

x0(B) (31)

and

B = sin
πn

2
− u

π

(
1 + ln

π cos2πn/2 sinπn/2

2u

)
. (32)

Using these results and also (25b) one arrives at (8b) and (8c).
We note here that the spectrum of the excitations that we have considered was studied

earlier by Krivnov and Ovchinnikov (1975). Our result does not agree completely with
theirs.

In the present work we have concentrated on the massive excitations in the relativistic
limit of the non-half-filled Hubbard chain. A more detailed study also including the massless
excitations and comparison of the half- and non-half-filled cases is planned to be published
in another paper.

I am grateful to P Forgacs for stimulating discussions. The work has been supported by
OTKA grant T014443.
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